Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Adducts of 1,1,1-tris(4-hydroxyphenyl)ethane with diamines: three-dimensional hydrogen-bonded frameworks formed with 1,6-diaminohexane and 2,2'-bipyridyl

Choudhury M. Zakaria, ${ }^{\text {a }} \boldsymbol{}{ }^{\text {© George Ferguson, }}{ }^{\text {a }} \ddagger$ Alan J. Lough $^{\mathbf{b}}$ and Christopher Glidewell ${ }^{\mathbf{a}}$ *
${ }^{\text {a S School }}$ of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, and ${ }^{\mathbf{b}}$ Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada M5S 3H6
Correspondence e-mail: cg@st-andrews.ac.uk

Received 21 January 2002
Accepted 22 January 2002
Online 12 March 2002
The adduct 1,6-diaminohexane-1,1,1-tris(4-hydroxyphenyl)ethane (1/2) is a salt \{hexane-1,6-diyldiammonium-4-[1,1-bis(4-hydroxyphenyl)ethyl]phenolate (1/2)\}, $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{20^{-}}$ $\mathrm{H}_{17} \mathrm{O}_{3}^{-}$, in which the cation lies across a centre of inversion in space group $P \overline{1}$. The anions are linked by two short $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [$\mathrm{H} \cdots \mathrm{O} 1.74$ and $1.76 \AA$ A, O $\cdots \mathrm{O} 2.5702$ (12) and $2.5855(12) \AA$, and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} 168$ and 169°] into a chain containing two types of $R_{2}^{2}(24)$ ring. Each cation is linked to four different anion chains by three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [H…O 1.76-2.06 Å, N \cdots O 2.6749 (14)-2.9159 (14) \AA and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 156-172^{\circ}$]. In the adduct $2,2^{\prime}$-bipyridyl $-1,1,1-$ tris(4-hydroxyphenyl)ethane (1/2), $\quad \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$.$2 \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3}$, the neutral diamine lies across a centre of inversion in space group $P 2_{1} / n$. The tris(phenol) molecules are linked by two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{H} \cdots \mathrm{O}$ both 1.90 Å, O $\cdots \mathrm{O} 2.7303$ (14) and 2.7415 (15) \AA, and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ 173 and 176°] into sheets built from $R_{4}^{4}(38)$ rings. Pairs of tris(phenol) sheets are linked via the diamine by means of a single $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond $[\mathrm{H} \cdots \mathrm{N} 1.97 \AA$, $\mathrm{O} \cdots \mathrm{N}$ 2.7833 (16) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N} 163^{\circ}$].

Comment

When cocrystallized with $4,4^{\prime}$-bipyridyl, the threefold symmetric tris(phenol) 1,1,1-tris(4-hydroxyphenyl)ethane, $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right)_{3}$, forms a hydrogen-bonded adduct of 3:2 stoichiometry, $3 \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot 2 \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3}$, in which all the hydrogen bonds are of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ type and the supramolecular structure of which consists of tenfold interwoven nets built

[^0]from $R_{12}^{12}(126)$ rings (Bényei et al., 1998). In a similar way, $4,4^{\prime}$ bipyridyl forms a 3:2 adduct with 1,3,5-benzenetricarboxylic acid, where the supramolecular structure consists of threefold interwoven sheets of $R_{12}^{12}(102)$ rings (Sharma \& Zaworotko, 1996). In the expectation of forming nets built from still larger rings, we recently investigated the adducts formed by $1,1,1-$ tris(4-hydroxyphenyl)ethane with the extended bipyridyl 1,2-bis(4-bipyridyl)ethane, but this yielded not a 3:2 adduct but, instead, a 1:2 adduct (Zakaria et al., 2002). Continuing our study of the adducts formed by 1,1,1-tris(4-hydroxyphenyl)ethane and diamines, we have now synthesized and characterized the adducts (I) and (II), formed with 1,6diaminohexane and $2,2^{\prime}$-bipyridyl, respectively.

(I)

(II)

The tris(phenol) 1,1,1-tris(4-hydroxyphenyl)ethane forms a 1:2 adduct, (I), with 1,6-diaminohexane. The constitution of (I) is that of a salt, $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{-}$, in which one hydroxyl H atom has been transferred from each molecule of the tris(phenol) to an amine group (Fig. 1). The constitution of (I) may be contrasted with that of the corresponding 1:2 adduct formed with 1,2-diaminoethane (Ferguson et al., 1998b), in which there is no transfer of an H atom from O to N , so that both components are neutral overall.

The cation in (I) lies across a centre of inversion in space group $P \overline{1}$, chosen, for the sake of convenience, as that at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, and the anion occupies a general position. Five hydrogen bonds, two of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ type and three of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type (Table 2), link the ions into a three-dimensional framework, which can readily be analysed using the substructure approach (Gregson et al., 2000). The anions form a onedimensional substructure in the form of a chain of fused rings, and these chains are linked by the cations into the overall three-dimensional structure, where each cation is linked to four anion chains.

The hydroxyl atom O 2 in the anion at (x, y, z) acts as a hydrogen-bond donor to the charged atom O1 in the anion at $(1-x, 1-y, 2-z)$, while atom O 2 at $(1-x, 1-y, 2-z)$ in turn acts as a donor to atom O 1 at (x, y, z), so generating a centrosymmetric $R_{2}^{2}(24)$ ring, centred at $\left(\frac{1}{2}, \frac{1}{2}, 1\right)$. Similarly, hydroxyl atom O3 at (x, y, z) acts as a hydrogen-bond donor to atom O1 at $(1-x,-y, 2-z)$, so producing a second $R_{2}^{2}(24)$ ring, centred at $\left(\frac{1}{2}, 0,1\right)$. In this manner, a chain containing two types of $R_{2}^{2}(24)$ ring is generated, running along the line $\left(\frac{1}{2}, y, 1\right)$ (Fig. 2). There is just one chain of this type per unit cell.

The ammonium N 4 atoms at (x, y, z) and $(1-x, 1-y, 1-z)$ both lie in the cation centred at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, and each forms three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). Atom N 4 at (x, y, z) acts as a hydrogen-bond donor via atoms $\mathrm{H} 4 A, \mathrm{H} 4 B$ and $\mathrm{H} 4 C$, respectively, to atom O 2 at $(2-x, 1-y, 1-z), \mathrm{O} 1$ at $(x, y$, $z-1)$ and O 3 at (x, y, z). These O atoms lie in [010] chains along $\left(\frac{3}{2}, y, 0\right),\left(\frac{1}{2}, y, 0\right)$ and $\left(\frac{1}{2}, y, 1\right)$, respectively. The corresponding O -atom acceptors from N 4 at $(1-x, 1-y, 1-z)$ are at $(x-1, y, z),(1-x, 1-y, 2-z)$ and $(1-x, 1-y, 1-z)$, and these acceptors lie in the anion chains along ($-\frac{1}{2}, y, 1$), $\left(\frac{1}{2}, y, 1\right)$ and $\left(\frac{1}{2}, y, 0\right)$, respectively. Hence, each cation is directly hydrogen-bonded to four different [010] chains, and propagation of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds by the space group links all the chains into a single framework (Fig. 3).

The 1:2 adduct formed with 2, 2^{\prime}-bipyridyl, (II), differs from (I) in that both components in (II) are neutral overall, with no transfer of an H atom from O to N , so that the formula is $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot 2 \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3}$ (Fig. 4). The diamine lies across a centre of inversion in space group $P 2_{1} / n$, chosen as that at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, and it thus has parallel rings, with the two N atoms on opposite edges of the essentially planar molecule.

Figure 1
The molecular components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (i) $1-x, 1-y, 1-z$].

Three hydrogen bonds (Table 4) link the components of (II) into a three-dimensional framework, and again this is most readily analysed in terms of the tris(phenol) substructure, which is two-dimensional in (II), as opposed to one-dimensional in (I). Atom O3 at (x, y, z) acts as a hydrogen-bond donor to atom O 2 at $(x, 1+y, z)$, so generating by translation a $C(12)$ chain running parallel to the [010] direction (Fig. 5). Atom O 2 at (x, y, z) itself acts as a donor to atom O 1 at $\left(\frac{1}{2}+x\right.$, $\frac{1}{2}-y, \frac{1}{2}+z$), while atom O 2 at $\left(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ in turn acts as a donor to O 1 at $(1+x, y, 1+z)$, so producing a second $C(12)$ chain, this time parallel to [101] and generated by the n-glide plane at $y=\frac{1}{4}$ (Fig. 5). The combination of these two chain motifs generates a (10 $\overline{1}$) sheet built from a single type of $R_{4}^{4}(38)$ ring.

Centrosymmetrically related pairs of (10 $\overline{1}$) sheets in (II) are linked by the diamines (Fig. 6) to form centrosymmetric bilayers. Atom O 1 at (x, y, z) is part of the reference $(10 \overline{1})$ sheet (Fig. 5), and it acts as a hydrogen-bond donor to atom N 42 , also at (x, y, z), part of the diamine centred at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. The symmetry-related N 42 atom in the same diamine is at $(1-x$, $1-y, 1-z$), and it accepts a hydrogen bond from atom O 1 at ($1-x, 1-y, 1-z$), which lies in an adjacent inversionrelated sheet. Within this second sheet, atom O 2 at $(1-x$, $1-y, 1-z$) acts as a hydrogen-bond donor to atom O 1 at $\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$, which in turn acts as a donor to atom N 42 at $\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$. This N 42 is a component of the diamine

Figure 2
Part of the crystal structure of (I), showing the formation of a chain of fused $R_{2}^{2}(24)$ rings along [010]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (\#) or dollar sign (\$) are at the symmetry positions $(1-x, 1-y, 2-z)$, $(x, 1+y, z)$ and $(1-x,-y, 2-z)$, respectively.
centred at $(0,1,0)$, with the symmetry-related N 42 atom in the $(0,1,0)$ diamine at $\left(x-\frac{1}{2}, \frac{3}{2}-y,-\frac{1}{2}\right)$, and it accepts a hydrogen bond from atom O1 at $\left(x-\frac{1}{2}, \frac{3}{2}-y,-\frac{1}{2}\right)$, which itself lies in the original (10 $\overline{1}$) sheet. In each bilayer, each diamine passes through an $R_{4}^{4}(38)$ ring in an adjacent bilayer (Fig. 6), so that each bilayer is interlinked with its two immediate neighbours, so generating a single three-dimensional structure. The overall supramolecular topology in (II) is thus analogous to that in the adduct formed between the tris(phenol) and 1,2-bis(4pyridyl)ethane (Zakaria et al., 2002).

All of the hydrogen bonds in compounds (I) and (II) have $\mathrm{H} \cdots A$ and $D \cdots A$ distances which are fairly short for their types, and the $D-\mathrm{H} \cdots A$ angles all exceed 160° (Tables 2 and 4). It is notable that the O $\cdots \mathrm{O}$ distances for the hydrogen bonds in (I), where the acceptor in both is the negatively charged atom O1, are significantly shorter than those in (II), where both acceptors still carry an H atom. Similarly, of the three $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in (I), that involving the charged atom O1 is significantly shorter than the other two, even though O1 acts here as a triple acceptor, whereas atoms O 2 and O 3 are both single acceptors.

In each of (I) and (II), the heavy-atom skeleton of the tris(phenol) component adopts a conformation close to C_{3} rotational symmetry (Tables 1 and 3), while the centrosymmetric cation in (I) adopts the all-trans extended-chain conformation, with the two independent torsion angles both

Figure 3
Part of the crystal structure of (I), showing the linking by the cations of the [010] chains. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (\#) or dollar sign (\$) are at the symmetry positions $(x, y, z-1),(2-x, 1-y, 1-z)$ and ($1-x, 1-y, 1-z$), respectively.
close to 180° (Table 1). The bond lengths and angles present no unexpected features.

It is appropriate to summarize here the general structural features of the adducts formed by 1,1,1-tris(4-hydroxyphenyl)ethane with diamines. In the 1:1 and 1:2 adducts formed with hexamethylenetetramine, $\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4}$, the amine and the tris(phenol) units alternate in sheets and chains, respectively, with additional amine units pendant from the chains in the 1:2 adduct, so that no tris(phenol) substructure can be identified in either adduct (Coupar, Ferguson et al., 1997; Coupar, Glidewell \& Ferguson, 1997). Similarly, there is no tris(phenol) substructure present in the 3:2 adduct formed with 4,4'-bipyridyl (Bényei et al., 1998). In all of the other adducts we have studied (Ferguson et al., 1997, 1998a,b, 1999; Glidewell et al., 2000; Zakaria et al., 2002), there are two motifs formed by the tris(phenol) molecules which are consistently present. The predominant motif is a $C(12)$ chain, often generated by translation and formed when the hydroxyl O atom in one molecule acts as a hydrogen-bond donor to an O atom in another molecule. This motif is present in the adducts with 1,4-diazabicyclo[2.2.2]octane (Ferguson et al., 1997), 1,2diaminoethane (Ferguson et al., 1998b), bis(2-aminoethyl)amine (Glidewell et al., 2000), 1,10-phenanthroline (Ferguson et al., 1999), and 1,2-bis(4-pyridyl)ethane and 1,2-bis(4pyridyl)ethene (Zakaria et al., 2002), as well as in (I) and (II). When there are two independent molecules of the tris(phenol), the $C(12)$ motif can be replaced by a $C_{2}^{2}(24)$ chain, as in the adducts formed with piperazine (Ferguson et al., 1997) and 1,4,8,11-tetraazacyclotetradecane (Ferguson et al., 1998a).

Pairs of these $C(12)$ or $C_{2}^{2}(24)$ chains can either combine to form chains of fused rings, comprising $R_{2}^{2}(24)$ rings, as in (I), or $R_{4}^{4}(38)$ rings, as in the adduct formed with bis(2-aminoethyl)amine, or they can combine to form sheets built from $R_{4}^{4}(38)$ rings, as in the adducts with 1,4-diazabicyclo[2.2.2]octane, piperazine, 1,2-diaminoethane, 1,2-bis(4-pyridyl)-

Figure 4
The molecular components of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (i) $1-x, 1-y, 1-z$].
ethane or 2,2-bipyridyl, as described here for (II). A substructure comprising sheets of $R_{4}^{4}(38)$ rings can also be identified in the three-dimensional framework structure of 1,1,1-tris(4-hydroxyphenyl)ethane itself (Ferguson et al., 1997), while in the methanol solvate formed with $1,10-$ phenanthroline, $C(12)$ chains formed by the tris(phenol) alone combine with $C(14)$ chains formed from alternating tris(phenol) and methanol units to generate sheets built from $R_{6}^{6}(42)$ rings (Ferguson et al., 1999). Where sheets of $R_{4}^{4}(38)$ rings are formed, they are sometimes interwoven in pairs; this occurs in the tris(phenol) itself and in its adduct with 1,2diaminoethane. Likewise, the sheets of $R_{6}^{6}(42)$ rings in the 1,10-phenanthroline adduct are pairwise interwoven. However, in the 1,2-bis(4-pyridyl)ethane adduct (Zakaria et al., 2002), the sheets of $R_{4}^{4}(38)$ rings are generated wholly by translation and no mutual interweaving is possible.

In view of the striking difference in stoichiometry between the adduct formed with 4,4'-bipyridyl on the one hand, where the amine-tris(phenol) ratio is $3: 2$ (Bényei et al., 1998), and, on the other hand, the adducts formed with 1,2-bis(4pyridyl)ethane (Zakaria et al., 2002) and 2,2'-bipyridyl, (II), where this ratio is $1: 2$, we have briefly re-investigated the crystallization characteristics of mixtures of the tris(phenol) with both 4,4'-bipyridyl and 1,2-bis(4-pyridyl)ethane. In each system, mixtures in methanol containing molar ratios of the amine to tris(phenol) of 1:2, 1:1, 3:2 and 2:1 (i.e. ratios of $n: 2$

Figure 5
Part of the crystal structure of (II), showing the formation of a (101) sheet built from $R_{4}^{4}(38)$ rings. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*), hash (\#), dollar sign (\$) or 'at' sign (@) are at the symmetry positions ($\frac{1}{2}+x, \frac{1}{2}-y$, $\left.\frac{1}{2}+z\right),(x, 1+y, z),\left(\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z\right)$ and $(1+x, y, 1+z)$, respectively.
for $n=1$ to 4) were crystallized at ambient temperature. Each such solution containing $4,4^{\prime}$-bipyridyl yielded the analytically pure 3:2 adduct, and each solution containing 1,2-bis(4pyridyl)ethane yielded the analytically pure 1:2 adduct. It must be concluded that these compositions represent very well defined energy minima in their respective phase systems, but it is by no means clear why the compositions and structures of these stable phases should be so different.

Figure 6
A stereoview of part of the crystal structure of (II), showing the linking of two ($10 \overline{1}$) sheets by means of a diamine passing through an $R_{4}^{4}(38)$ ring, forming part of a third such sheet. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Experimental

For (I) and (II), equimolar quantities of the tris(phenol) and the appropriate diamine were separately dissolved in methanol. These component solutions were mixed and the mixtures set aside to crystallize, producing (I) and (II). Analysis for (I), found: C 75.3, H 7.3, N $3.9 \% ; \mathrm{C}_{46} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires C 75.8, H 7.2, N 3.8%. Analysis for (II), found: C $77.5, \mathrm{H} 5.7, \mathrm{~N} 3.7 \% ; \mathrm{C}_{50} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires C 78.1, H 5.8, N 3.6\%. Crystals suitable for single-crystal X-ray diffraction were selected directly from the analytical samples.

Compound (I)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{3}^{-}$	$Z=1$
$M_{r}=728.9$	$D_{x}=1.239 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.47150(10) \AA$	Cell parameters from 8773
$b=12.2447(3) \AA$	reflections
$c=13.0098(4) \AA$	$\theta=2.6-27.5^{\circ}$
$\alpha=77.2052(10)^{\circ}$	$\mu=0.08 \mathrm{~mm}^{-1}$
$\beta=76.6823(10)^{\circ}$	$T=150(2) \mathrm{K}$
$\gamma=84.3491(16)^{\circ}$	Needle, colourless
$V=977.06(4) \AA^{3}$	$0.32 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector	$R_{\mathrm{int}}=0.047$
\quad diffractometer	$\theta_{\max }=27.5^{\circ}$
φ scans, and ω scans with κ offsets	$h=-8 \rightarrow 8$
14162 measured reflections	$k=-15 \rightarrow 15$
4471 independent reflections	$l=-16 \rightarrow 16$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.047 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-15 \rightarrow 15 \\
& l=-16 \rightarrow 16
\end{aligned}
$$

Table 1
Selected torsion angles (${ }^{\circ}$) for (I).

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$	$-34.16(15)$	$\mathrm{N} 4-\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 44$	$174.00(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 21-\mathrm{C} 22$	$-45.77(15)$	$\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 44-\mathrm{C} 44^{\mathrm{i}}$	$-179.02(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 31-\mathrm{C} 32$	$-58.15(14)$		

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\left(\AA{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.84	1.74	2.5702 (12)	168
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {ii }}$	0.84	1.76	2.5855 (12)	169
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {iii }}$	0.91	1.92	2.8227 (14)	172
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 1^{\text {iv }}$	0.91	1.79	2.6749 (14)	164
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O} 3$	0.91	2.06	2.9159 (14)	156

Symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $1-x,-y, 2-z$; (iii) $2-x, 1-y, 1-z$; (iv) $x, y, z-1$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.109$
$S=1.05$
4471 reflections
249 parameters
H -atom parameters constrained

Compound (II)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot 2 \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3}$
$M_{r}=768.88$
Monoclinic, $P 2_{1 / n} n$
$a=12.1021$ (4) A
$b=10.7710$ (4) \AA
$c=15.2142(6) \AA$
$\beta=90.2800(17)^{\circ}$
$V=1983.17(13) \AA^{3}$
$Z=2$

Data collection

Nonius KappaCCD area-detector diffractometer
φ scans, and ω scans with κ offsets 12870 measured reflections 4511 independent reflections 3423 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.117$
$S=1.04$
4511 reflections
267 parameters
H -atom parameters constrained
$D_{x}=1.288 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8697
reflections
$\theta=2.7-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Block, colourless
$0.32 \times 0.30 \times 0.16 \mathrm{~mm}$

$R_{\text {int }}=0.051$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-15 \rightarrow 15$
$k=-13 \rightarrow 13$
$l=-19 \rightarrow 19$

$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0454 P)^{2}\right.$
$\quad+0.4013 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97
$($ Sheldrick, 1997$)$
Extinction coefficient: $0.017(3)$

Compound (I) crystallized in the triclinic system; space group $P \overline{1}$ was assumed and confirmed by the analysis. For compound (II), space group $P 2_{1} / n$ was uniquely assigned from the systematic absences. H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.95$ (aromatic), $0.98\left(\mathrm{CH}_{3}\right)$ or $0.99 \AA\left(\mathrm{CH}_{2}\right), \mathrm{N}-\mathrm{H}=0.91 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$.

Table 3
Selected torsion angles $\left({ }^{\circ}\right)$ for (II).

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$	$53.23(16)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 31-\mathrm{C} 32$	$44.22(17)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 21-\mathrm{C} 22$	$39.62(17)$		

Table 4
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{~N} 42$	0.84	1.97	$2.7833(16)$	163
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.90	$2.7303(14)$	173
$\mathrm{O}^{2}-\mathrm{H} 3 \cdots \mathrm{O}^{2 i}$	0.84	1.90	$2.7415(15)$	176

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $x, 1+y, z$.
For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the University of Toronto using a Nonius KappaCCD diffractometer purchased with funds from NSERC, Canada. CMZ thanks the Association of Commonwealth Universities for the award of a Commonwealth Fellowship 2000-2001.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1534). Services for accessing these data are described at the back of the journal.

References

Bényei, A. C., Coupar, P. I., Ferguson, G., Glidewell, C., Lough, A. J. \& Meehan, P. R. (1998). Acta Cryst. C54, 1515-1519.
Coupar, P. I., Ferguson, G., Glidewell, C. \& Meehan, P. R. (1997). Acta Cryst. C53, 1978-1980.
Coupar, P. I., Glidewell, C. \& Ferguson, G. (1997). Acta Cryst. B53, 521-533. Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Ferguson, G., Bell, W., Coupar, P. I. \& Glidewell, C. (1997). Acta Cryst. B53, 534-543.
Ferguson, G., Glidewell, C., Gregson, R. M. \& Meehan, P. R. (1998a). Acta Cryst. B54, 139-150.
Ferguson, G., Glidewell, C., Gregson, R. M. \& Meehan, P. R. (1998b). Acta Cryst. B54, 330-338.
Ferguson, G., Glidewell, C. \& Lavender, E. S. (1999). Acta Cryst. B55, 591-600. Glidewell, C., Ferguson, G., Gregson, R. M. \& Campana, C. F. (2000). Acta Cryst. B56, 68-84.
Gregson, R. M., Glidewell, C., Ferguson, G. \& Lough, A. J. (2000). Acta Cryst. B56, 39-57.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sharma, C. V. K. \& Zaworotko, M. J. (1996). J. Chem. Soc. Chem. Commun. pp. 2655-2656.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. November 2001 version. University of Utrecht, The Netherlands.
Zakaria, C. M., Ferguson, G., Lough, A. J. \& Glidewell, C. (2002). Acta Cryst. C58, o1-o5.

[^0]: \dagger On leave from the Department of Chemistry, University of Rajshahi, Rajshahi, Bangladesh.
 \ddagger Permanent address: Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

